

From microfluidics at TIPs to Secoya

Benoit Scheid

TIPs – Transfers, Interfaces & Processes Universit**é** Libre de Bruxelles

CRISTA'DAYS - November $8^{\rm th}$

Microfluidics & Lab-on-a-chip

Microfluidics for production ?

From early stage to full scale production

- Lower development cost
- Reduce time to market
- Flexibility in production

1) Flow crystallization

3) Micro-emulsification

1) Flow crystallization

2) Solvent extraction by pervaporation

3) Micro-emulsification

Flow vs. batch crystallization of APIs

Fine control of the nucleation rate

Influence of shear on the nucleation rate

[Debuysschère, Rimez, Zaccone & Scheid, Crystal Growth and Design, 2023]

From TIPs to Secoya

Bart Rimez

1) Flow crystallization

2) Solvent extraction by pervaporation

3) Micro-emulsification

Separation by pervaporation

Vapour enriched in volatile components Liquid reduced in volatile components

Modeling Purge-gas pervaporation

			Heating Plate				
			PDMS				
			G , m_{g} , h_{g} , w_{g} , i_{g}			_	rL_0
<	Р, Т	1	vapour channel	1	Ţ		
			membrane		H		
0 x I→→			liquid channel		↑	WL	P. P.t.
L_0, m_0, h_0, w_0		1	$L, m_{l_i} h_{l_i}, w_{l_i}$	1	B =		HL_0
			PDMS				
			Cooling Plate				
<			d			>	

Theoretical Efficiency

$$\eta_1 = 1 - \frac{L(L_p)m_l(L_p)}{L_0m_0}$$

Quantifies the transfer of methanol from the liquid channel to the vapour channel

$$\eta_2 = \frac{L(L_p)h_l(L_p)}{L_0h_0}$$

Quantifies the conservation of H_2O_2 in the liquid channel

$$\eta = \eta_1 \eta_2$$

Overall efficiency of the chip

Theoretical Efficiency

$$m_{0} = 0.74, h_{0} = 0.11,$$

$$T = 70^{\circ}\text{C} - P = 0.5 \text{ bar}$$

$$\eta$$

$$1 \qquad r = 10^{0}$$

$$\cdots r = 10^{-1}$$

$$0.8 \qquad r = 10^{-2}$$

$$\cdots r = 10^{-3}$$

$$0.6 \qquad r = 10^{-5}$$

$$0.4 \qquad 0.2$$

$$0.01 \qquad 0.1 \qquad 1 \qquad 10 \qquad 100$$

$$B$$

B =	$WL_pP_yP_{\rm atm}$			
	HL_0			

Experimental proof-of-concept

Theory vs. experiment

• Experimental points

[Ziemecka, Haut & Scheid, Microfluidics, & Nanofluidics, 2017]

From TIPs to Secoya

Iwona Ziemecka

Jean Septavaux

1) Flow crystallization

2) Solvent extraction by pervaporation

3) Micro-emulsification

Micro-emulsification

Poor sphericity

Background Different ways of making microdroplets

Droplet generation: 2 mechanisms 1. Rayleigh-Plateau mechanism (Dynamic instability)

Micro-droplet generation

[Evangelio et al. 2016]

[Dewandre et al. 2020]

$Raydrop \\ {\tt Non-embedded \ co-flow-focusing} \\$

Dispersed phase, Q_d	Continuous	phase	e, Q_c	0	0	0	8du 3000 9000 900
	Me	1 <u>80 μ</u> m					

Water in mineral oil, 500 Hz $\,$

- No coating needed
- No surfactant needed
- W/O and O/W
- Miscible fluids
- 10 to 400 $\mu \rm{m}$

FEM + ALE + BALE (Comsol Multiphysics)

[Rivero-Rodriguez, Perez-Saborid & Scheid, JCP, 2021]

Dripping (D) to quasi-static jetting (QSJ) transition

Dropsizer

FLUIGENT

How to mesure the size of a droplet?

Phase diagram

 $\mu_c = 23\mu_d$

Universal μ droplet generator

Universality

From TIPs to Secoya

Adrien Dewandre

Single and double emulsions for encapsulation

1) Flow crystallization

2) Solvent extraction by pervaporation

3) Micro-emulsification

Making big volumes with small capillaries

From Secoya to TIPs

Thanks for your attention

